Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors.

نویسندگان

  • S J James
  • William Slikker
  • Stepan Melnyk
  • Elizabeth New
  • Marta Pogribna
  • Stefanie Jernigan
چکیده

Thimerosol is an antiseptic containing 49.5% ethyl mercury that has been used for years as a preservative in many infant vaccines and in flu vaccines. Environmental methyl mercury has been shown to be highly neurotoxic, especially to the developing brain. Because mercury has a high affinity for thiol (sulfhydryl (-SH)) groups, the thiol-containing antioxidant, glutathione (GSH), provides the major intracellular defense against mercury-induced neurotoxicity. Cultured neuroblastoma cells were found to have lower levels of GSH and increased sensitivity to thimerosol toxicity compared to glioblastoma cells that have higher basal levels of intracellular GSH. Thimerosal-induced cytotoxicity was associated with depletion of intracellular GSH in both cell lines. Pretreatment with 100 microM glutathione ethyl ester or N-acetylcysteine (NAC), but not methionine, resulted in a significant increase in intracellular GSH in both cell types. Further, pretreatment of the cells with glutathione ethyl ester or NAC prevented cytotoxicity with exposure to 15 microM Thimerosal. Although Thimerosal has been recently removed from most children's vaccines, it is still present in flu vaccines given to pregnant women, the elderly, and to children in developing countries. The potential protective effect of GSH or NAC against mercury toxicity warrants further research as possible adjunct therapy to individuals still receiving Thimerosal-containing vaccinations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اهمیت فیزیولوژیکی گلوتاتیون در سلامت و بیماری

Glutathione (GSH) is the most abundant low molecular weight- thiol and thus representing the first line of cellular defense against oxidative stress in biological systems. Other important functions of glutathione include regulation of gene expression, signal transduction, cell proliferation and apoptosis, cytokine production and immune response. Intracellular glutathione concentrations vary fro...

متن کامل

Protection against 3,4-methylenedioxymethamphetamine-induced neurodegeneration produced by glutathione depletion in rats is mediated by attenuation of hyperthermia.

3,4-Methylenedioxymethamphetamine (MDMA) administration produces neurotoxic degeneration of serotonin terminals in rat brain. These effects occur only after systemic administration and not after central injection, suggesting that peripheral metabolism, possibly hepatic, is required for toxicity. Glutathione is one of the principal cellular defence mechanisms, but conjugation with glutathione ca...

متن کامل

Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal.

The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein speci...

متن کامل

Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins.

Thimerosal (TH), an ethylmercury complex of thiosalicylic acid has been used as preservative in vaccines. In vitro neurotoxicity of TH at high nM concentrations has been reported. Although a number of toxicological experiments demonstrated high affinity of mercury to thiol groups of the extracellular amino acids and proteins that may decrease concentration of free TH in the organism, less is kn...

متن کامل

Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.

Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurotoxicology

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2005